Fundamental Structural Limitations of an Industrial Energy Management Controller Architecture for Hybrid Vehicles
نویسندگان
چکیده
Energy management controllers for hybrid electric vehicles typically contain numerous parameters that must be tuned in order to arrive at a desired compromise among competing attributes, such as fuel economy and driving quality. This paper estimates the Pareto tradeoff curve of fuel economy versus driving quality for a baseline industrial controller, and compares it to the Pareto tradeoff curve of an energy management controller based on Shortest Path Stochastic Dynamic Programming (SPSDP). Previous work had shown important performance advantages of the SPSDP controller in comparison to the baseline industrial controller. Because the baseline industrial controller relies on manual tuning, there was always the possibility that better calibration of the algorithm could significantly improve its performance. To investigate this, a numerical search of possible controller calibrations is conducted to determine the best possible performance of the baseline industrial controller and estimate its Pareto tradeoff curve. Both the SPSDP and baseline controllers are causal (i.e., do not rely on future drive cycle information). The SPSDP controllers achieve better performance (i.e., better fuel economy with equal or better driving quality) over a wide range of driving cycles due to fundamental structural limitations of the baseline controller that can not be overcome by tuning. The message here is that any decisions that restrict controller structure may limit attainable performance, even when many tunable parameters are made available to calibration engineers. The structure of the baseline algorithm and possible sources of its limitations are discussed. ∗Address all correspondence to this author.
منابع مشابه
A Novel Intelligent Energy Management Strategy Based on Combination of Multi Methods for a Hybrid Electric Vehicle
Based on the problems caused by today conventional vehicles, much attention has been put on the fuel cell vehicles researches. However, using a fuel cell system is not adequate alone in transportation applications, because the load power profile includes transient that is not compatible with the fuel cell dynamic. To resolve this problem, hybridization of the fuel cell and energy storage device...
متن کاملA new control strategy for energy management in Plug-in Hybrid Electric Vehicles based on Fuzzy Cognitive Maps
In this paper, a new control strategy for energy management in Plug-in Hybrid Electric Vehicles (PHEVs) using Fuzzy Cognitive Map (FCM) is presented. In this strategy, FCM is used as a supervisory control such that the State of Charge (SoC) of the battery is kept in the acceptable range and fuel consumption per kilometer is reduced, in addition to providing the request power. Since this method ...
متن کاملA Distributed Control Architecture for Autonomous Operation of a Hybrid AC/DC Microgrid System
Hybrid AC/DC microgrids facilitate the procedure of DC power connection into the conventional AC power system by developing the distributed generations (DGs) technologies. The conversion processes between AC and DC electrical powers are more convenient by hybrid systems. In this paper, an energy management system (EMS) for a hybrid microgrid network is proposed due to the optimal utilization of...
متن کاملA Genetic-Fuzzy Control Strategy for Parallel Hybrid Electric Vehicle
Hybrid Electric Vehicles (HEVs) are driven by two energy convertors, i.e., an Internal Combustion (IC) engine and an electric machine. To make powertrain of HEV as efficient as possible, proper management of the energy elements is essential. This task is completed by HEV controller, which splits power between the IC engine and Electric Motor (EM). In this paper, a Genetic-Fuzzy control strategy...
متن کاملOptimal power management of fuel cell hybrid vehicles
This paper presents a control strategy developed for optimizing the power flow in a Fuel Cell Hybrid Vehicle structure. This method implements an on-line power management based on the optimal fuzzy controller between dual power sources that consist of a battery bank and a Fuel Cell (FC). The power management strategy in the hybrid control structure is crucial for balancing between efficiency an...
متن کامل